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OPTIMIZATION OF CONICAL HYDROSTATIC BEARING
FOR MINIMUM FRICTION

by Lester J. Nypan,* Bernard J. Hamrock, Herbert W. Scibbe,
and William J. Anderson

Lewis Research Center

SUMMARY

Equations for the flow rate, load capacity, and friction torque for a conical hydro-
static bearing were developed. These equations were solved by a digital computer pro-
gram to determine bearing configurations for minimum friction torque. Design curves
are presented that show optimal bearing dimensions or minimum friction torque as a
function of dimensionless flow rate for a range of dimensionless load capacity. Results
are shown for both laminar and turbulent flow conditions. '

The results indicate that hydrostatic pocket friction is a significant portion of the
total friction torque. However, the bearing dimensions for a minimum friction design
are affected very little by inclusion of pocket friction in the analysis. For laminar flow
the values of the outer-land radius ratio X3 and outer bearing radius ratio X 4 did not
change significantly with increasing friction factor. For turbulent flow, the outer bear-
ing radius ratio X 4 did not change with increasing friction factor; therefore, the value
determined for X4 in the laminar flow case is valid for all turbulent flows.

INTRODUCTION

The design of incompressible fluid hydrostatic bearings with a variety of bearing
configurations has been treated by Rippel (ref. 1) and others (refs. 2 and 3). These
analyses have resulted in equations for load capacity, flow rate, and friction torque.
References 1 and 2 also indicate optimum bearing proportions to minimize pressuriza-
tion or pumping power requirements of such bearings. Preliminary studies on combina-
tion rolling-element - fluid-film bearings for high-speed applications such as the hybrid

* Professor of Engineering, San Fernando Valley State College, Northridge, Cali-
fornia; NASA Summer Faculty Fellow in 1970.



boost bearing (ref. 4) or the series hybrid fluid-film - rolling-element bearing (ref. 5)
have led to an interest in the design and performance characteristics of a conical hydro-
static bearing optimized to minimize bearing friction torque.

The series hybrid bearing requires a minimum-friction fluid-film bearing in order
to obtain the maximum reduction in rotative speed for the rolling-element bearing. The
conical hydrostatic bearing was selected for analysis as it has both thrust and radial
load capacity without the complexity of separate thrust and journal bearings. Overall
film thickness and friction torque of the bearing may be readily modified by changing the
supply pressure or, equivalently, the flow rate. This feature makes the conical hydro-
static bearing a prime candidate for use in future experimental work on the series hybrid
bearing concept.

This study presents an analysis of a conical hydrostatic bearing optimized to mini-
mize friction and a method of designing such a bearing for various combinations of
operating conditions of load capacity, flow rate, and Reynolds number.

Two operating regimes may be identified as of interest in conical hydrostatic bear-
ing design. These are (1) the low- and moderate-speed regime, where laminar flow
may be expected under the lands and within the hydrostatic pockets, and (2) the high-
speed regime, where turbulent flow might be expected within the hydrostatic pockets.

The method used to predict bearing performance characteristics in each of these
cases will be that of expressing equations relating pressure, thrust load, flow, and
friction torque in terms of bearing design parameters. Friction torque can then be
minimized by equating the rate of change of friction torque with bearing size to zero.

ANALYSIS

Figure 1 shows the configuration of a conical hydrostatic bearing as applied to a
series hybrid fluid-film - rolling-element bearing. Figure 2 shows the type of conical
hydrostatic bearing considered for this design application. Fluid is introduced at the
shaft centerline (fig. 2(@)) and is fed radially to orifice or capillary flow restrictors, at
radius R o’ which provide pressure compensation for potential misalinement and vary-
ing loads. The hydrostatic pressure available for load capacity is that developed at
radius R0 because of centrifugal effects. After the fluid has passed through the com-
pensating element, a pressure p is presumed to be available in the hydrostatic pockets
to resist a thrust load F. (Symbols are defined in appendix A.) The required pressure
area is determined by the thrust load the bearing must carry at supply pressure p. The

load capacity can be expressed by

_prm (2 2 _ Rp2_p2
F-?(R4+R3 R2 Rl) (1)




Equation (1) presumes that the full pressure p acts over the area of the pockets and
that the average pressure over the circumferential lands is p/2. This is a good approx-
imation provided that R 4/R3 and R2/R1 are not too much greater than 1. The effects
of relative motion on pressure profiles are neglected in this analysis.

Flow will take place radially over each circumferential land. The total flow is the
sum of the flow over the lands or

3

7hy p sin 8
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The derivation of this equation is shown in appendix B.
Friction torque due to the circumferential lands is presumed to be the result of
laminar shearing of the fluid between inner and outer circumferential lands and the

mating surface. The friction torque due to the inner and outer circumferential lands
can be written as

THwg 4 4 4 4
My, (R4 - Rg + Ry - R1> ®)

2hL sin 0

The derivation of this equation is also shown in appendix B.
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equations (1) to (3) can be written in dimensionless form as
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Solving for X, in equation () gives

1 )
1

X4 =X3 exp
Q-
1nX2

Note that X, is undefined for 6 =1/In X2. Substituting equation (7) for X 4 into equa-

tions (4) and (6) gives

-
F = %2 1+exp 2 -x2 .1 (8)
In X
-
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ML=X§-1+exp_—4——1—-— +X2—1 9)
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Solving for Xg in equation (8) gives
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Substituting equation (10) into equation (9) results in

ML=X2+<F+X2+1 (11)
dM. -
—£=4xg+(F+x§+1> 4X, tanh [— 1
dX2 a_ 1
2
(12)
Physical Restrictions
From figure 2 and the relations for the dimensionless radii, the following can be
written:
1<X2<X3<X4 (13)
From equation (10) and inequality (13),
- a1/2
F + Xg +1
X, < - (14)
1+ exp 2
5. 1
i In X2 ]
A further restriction which one needs in order to get reasonable results is that
— —_ X
Q=q-~—->1 -“tox (15)
X 4 In X2 X3
n —=
X3



Making use of equation (10), inequality (15) yields

X, > exp <é> (16)
Q
Making use of equations (14) and (16) while letting X, - exp %) yields

— [ 3 1/2
o2/Q (F + e¥/Q +1

1+e4/6

The preceding results in the following relation between F and Q:

F > exp %) -1 17)

Low-Speed Operating Regime

At low speeds pocket friction will occur through laminar shearing of the fluid. The
pressure gradient created by the action of the radial lands and pockets will also contrib-
ute to friction torque, as has been shown by Shinkle and Hornung (ref. 6). Their experi-
mental results, the envelope of which is reproduced in figure 3, supports their analytical
finding that the effective friction shear stress may be calculated from f = 2fr/pV2 with
f = 8/Re in the laminar flow regime (Re <1000). For the conical hydrostatic bearing,

Re = prwfhp/u and

hp

Rg Rq
4urw
Mp, = r1dA = r f £ 2rr dr
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The total fluid-film friction torque is the sum of the friction torque due to the cir-
cumferential lands and the pocket friction. This can be expressed as

M, =M +Mp (20)
By use of equation (19), equation (20) can be written in dimensionless form as
2M,h, sin 8
e = 4 4)
M, =— , =My +C,y ()(3—X2 21)
n,u.wle
where
h
C, =4, = (22)
T'h
p

In bearings where friction is to be minimized, the fraction of potential pocket area
actually used as hydrostatic pockets fr will be close to unity. It may then be noted that,
for hp >> h;, C; = 0 and in equation (21) the total friction torque becomes equal to
that due to the circumferential lands (Mt =M ).

Differentiating equation (21) with respect to X, results in

daMm dx
t-—L,gc, [x32-x3 23)
ax

The expression for dX3/dX2 can be obtained from equation (10) as
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Therefore, with equations (10), (12), and (24), equations (21) and (23) are expressed in
terms of Cl’ X2, F, and Q.

High-Speed Regime

When speeds become large enough to result in Reynolds numbers (Re = pwlehL/ )
greater than 1000, the turbulent friction action of the hydrostatic pockets must be
included.

Bearings operating within the turbulent flow regime have been treated by a number
of investigators (refs. 7 to 9). The work of Hirs (ref. 9), however, most accurately
represents the experimental work of Shinkle and Hornung (ref. 6) on turbulent hydro-
static bearing friction measurements.

Figure 3 shows the envelope of Shinkle and Hornung's experimental data for hydro-
static journal bearing pockets with 0.53- to 8. 16-millimeter (0.021-to 0.321-in.) depth.
The figure shows friction factor (f = 27/pV2) as a function of Reynolds number (Re =
pVh/1). The friction factor recommended by Hirs (¢ = 0. 062 Re 0- 25) is also shown in
figure 3. This function is used to predict conical hydrostatic pocket friction stress,

2

7 =0.031 pV Re~0-25 (25)

From equation (25), the friction torque due to the hydrostatic pockets Mp can be calcu-
lated by

5 -0.25
or w:h
iy - 0. 031)pv2 [ 1P fr<£fr_@£> 26)
n sin O
Ry
or
. 0.031278, 4 75 1.75 io.zs <R4_75 ) R4.75> @7)
P imseme L ) NP T2

The total friction torque, taking into account turbulence, can be expressed by equa-
tion (20), where Mp is now defined by equation (27). The dimensionless form of the




total friction torque for turbulent conditions may be expressed as

2M, sin 6 h
_ My L 4.75 4.75
Mt = ——-4— = ML + Cz (X3 - X2 > 28)
n,LwaRl
where
0.75
pR4w:h h
c. _ 2(0.062) fr< 1%% P> L 29)
4.75 7 hy

Differentiating equation (28) with respect to X, gives

dM, dM dX
—t-_L,gsc, (x50 2 _x3T (30)

2
dXz dX, dX2

Therefore, with equations (10), (12), and (24), equations (28) and (30) can be expressed
in terms of Cz, X2, f‘-, and 6

Optimization Procedure

The equations (10), (11), (12), 1), (23), (24), (28), and (30) developed in the anal-
ysis were programmed on a digital computer. It is seen from these equations that the

friction torque M, and its derivative with respect ’Eg X, are functions of the dimension-
less flow rate Q, the dimensionless load capacity F, the dimensionless coefficient C1
or C:2 (depending on whether the bearing is operating in the laminar or turbulent regime),
and the ratio of the outer radius to the inner radius of the inner land X2‘

The problem as defined in the INTRODUCTION is to find the optimal conical hydro-
static bearing configuration for minimum friction torque for laminar and turbulent flow
conditions. This means setting dﬁt/dX2 equal to zero in equations (23) and (30) and
finding the values of X, which satisfy these equations. The ''false position'' numerical
method was used in finding the optimal value of Xy. When C; or CZ’ F, and Q are
known, the optimal values of X2 for minimal friction could be obtained for laminar or
turbulent flow conditions.



DISCUSSION OF RESULTS

The results are shown in figures 4 to 22. 1In all these figures the abscissa is the
dimensionless flow rate Q, and for each figure seven curves are shown representing
seven values (0.5, 1, 2, 3, 5, 7, and 10) of dimensionless load capacity F. On the
ordinate of these figures, the optimal bearing configuration or the resulting minimum
friction torque is given. For low-speed operation, or when laminar flow exists, the
results are shown in figures 4 to 13, where C1 =0, 0.2, 0.4, or 0.8. For high-speed
operation, when turbulent flow exists, the results are shown in figures 14 to 22, where
Cz =0.2, 0.4, or 0.8. The values of F and Q were chosen such that they satisfy
inequality (13). The following comments can be made about figures 4 to 22:

(1) A designer is able to find optimal bearing configurations (Xz, X3, and X 4) for
minimum friction torque given the flow rate, load, and angular velocity.

(2) In figures 5, 15, 18, and 21, it is seen that X3 approaches an asymptote rather
quickly. Furthermore, the asymptotic values of X 4 in figure 6 are exactly the asymp-
totic values of X3 in figure 5 for a given dimensionless load capacity.

(3) For all the laminar flow cases (C1 =0, 0.2, 0.4, and 0. 8), it was found that the
values of X3 and X 4 did not change significantly when C1 changed. Therefore, fig-
ures 5 and 6, which are plotted for a Cl = 0, are to be used in obtaining the values of
X3 and X4, respectively, as long as the pocket flow is laminar (Re <1000).

(4) For all the turbulent flow cases (C2 =0.2, 0.4, and 0. 8), it was found that Xy
did not change with change of C2‘ Therefore, figure 6 may be used in obtaining the
value of X4.

(5) It was found that the addition of the laminar or turbulent pocket friction term in
the friction torque expression did not appreciably change the bearing dimensions (values
of Xz, X3, and X4) for minimum torque. It seems that, no matter how much C1 and
C2 are increased (within reasonable limits), torque is still less for pocket areas than
for the land areas.

(6) Friction torque values rise substantially when the laminar and turbulent pocket
friction terms are included, as can be seen from comparing figure 7 with figures 9, 11,
and 13 and with figures 16, 19, and 22. The torque increase is greatest at high flow

rates.

SUMMARY OF RESULTS

Equations for the flow rate, load capacity, and friction torque for a conical hydro-
static bearing were developed. A digital computer program was developed which deter-
mined the optimal bearing configuration for minimum friction torque. Design curves

10




showing optimal bearing configurations (radius ratios Xy, Xg, and X 4) or minimum
friction torque as a function of dimensionless flow rate were plotted for seven values of
dimensionless load capacity. Design curves were shown for both laminar and turbulent
flow conditions. The following results were obtained:

1. Friction torque was strongly affected by hydrostatic pocket iriction; however,
bearing dimensions for a minimum friction design were affected very little by pocket
friction.

2. For all laminar-flow cases, the values of X3 and X4 did not change signifi-
cantly with increasing values of friction factor.

3. For all turbulent flow cases, X, did not change with increasing values of friction
factor; therefore, the value of the friction factor, C1 = 0, determined for laminar flow
may be used to obtain the value of X 4 for all turbulent flows.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, February 23, 1971,
126-15.
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APPENDIX A

SYMBOLS

dimensionless laminar friction coefficient, 4thr/hP

0.75
) hy /hp

dimensionless turbulent friction coefficient, 0. 0261 fr (plefhP/ i
thrust load

dimensionless thrust load, F/ (npR%)

friction factor, 27/pV2

fraction of area between R2 and R3 occupied by hydrostatic pockets
fluid-film thickness

fluid-film bearing torque

dimensionless fluid-film bearing torque, 2Mh,h, sin 8/ (m Hwg)
total fluid-film bearing torque

pressure

fluid flow

dimensionless fluid flow, 6uQ/ (nh3p sin 6)

inner radius of inner land

outer radius of inner land

inner radius of outer land

outer radius of outer land

Reynolds number, pVh/u

relative speed between fluid film bearing surfaces, rwg
Ry/Ry

R3/ R,

R 4/R1

half-angle of conical hydrostatic bearing

fluid dynamic viscosity

fluid density

fluid-film shear stress



Wy rotational speed of fluid-film bearing

Subscripts:
L land
P pocket

13



APPENDIX B

DERIVATION OF FLOW RATE AND FRICTION TORQUE EQUATIONS

The pressure in the pocket is higher than that outside the bearing. Flow will take
place through the clearance over the inner and outer lands (see fig. 2(b)). For laminar

flow in a narrow slot,

bhT, gp

120 dx

where x is the distance along the slot.
For the geometry of figure 2, the following can be written for flow over the outer

land:

dx = dR
sin 6
b =21R

3 .
7Rh sin 6
LQ,=- L™ dp (B1)
6L dR

This may be integrated to yield

3 .
_nthmep 1
Q, =

6L R
m-2

Rg

A similar expression can be developed for the flow over the inner land Q1 The
flow over both lands is

3

Q-q 1@ -TPIl 1 ®2)
° 6L R, R,
In—2 1n—2
Ry Ry
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Friction torque is assumed due to laminar shearing of fluid over the lands, so that
shear stress can be written as

Friction force at radius R is (27R dx)u(wa)/hL. The friction torque of the outer land
is

R
27w THW
(ot @R __TH(ea
h sin 6 2h; sin 8
L L
Rg
The friction torque due to both lands can be written as
W
M, =M. + M :—f_—<R4—R4+R4-R4> (B3)
L i o] - 3 2 1
2hL sin 6

15
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Friction factor, f= 2tpv?

10—
~1=0.062Re ™02 (ref. 9)
102— 4
~ 7/
L /
L < Envelope of
experimental data (ref. 6)
03 N N Cla ]
102 103 104 10°

Reynolds number, Re = pVhiu

Figure 3. - Friction factor as a function of Reynolds number for hydrostatic journal bearing pockets.
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Minimum dimensionless friction torque, Wy
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Minimum dimensionless friction torque, My
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